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Abstract
Spin and charge currents in systems with Rashba or Dresselhaus spin–orbit
couplings are formulated in a unified version of four-dimensional SU(2)×U(1)

gauge theory, with U(1) being the Maxwell field and SU(2) being the Yang–
Mills field. While the bare spin current is non-conserved, it is compensated by a
contribution from the SU(2) gauge field, which gives rise to a spin torque in the
spin transport, consistent with the semi-classical theory of Culcer et al. Orbit
current is shown to be non-conserved in the presence of electromagnetic fields.
Similar to the Maxwell field inducing forces on charge and charge current, we
derive forces acting on spin and spin current induced by the Yang–Mills fields
such as the Rashba and Dresselhaus fields and the sheer strain field. The spin
density and spin current may be considered as a source generating Yang–Mills
field in certain condensed matter systems.

PACS numbers: 72.25.−b, 72.10.−d, 03.65.−w

1. Introduction

Spintronics or spin-based electronics offers opportunities for a new generation of electronic
devices for information process and storage [1, 2]. One of the recent developments in this field
is the study of the spin Hall effect, which has potential applications to generate and manipulate
spin polarization and spin currents by applying an electric field [3–9, 11–17]. The intrinsic
transverse spin current induced by an electric field was predicted by Murakami et al [4] in
the Luttinger Hamiltonian and by Sinova et al [5] in two-dimensional electron systems with
a Rashba spin–orbit coupling. A resonant spin Hall conductance was also predicted by Shen
et al [6] in the latter system when a strong perpendicular magnetic field is applied. It has
been generally agreed by now that the spin Hall conductivity vanishes in Rashba systems with
impurities in the absence of a magnetic field [7, 8]. On the experimental side, the coherent
spin manipulation and the electrically induced spin accumulation have been observed [9–11].
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One of the current issues in the study of spin Hall effect is the non-conservation of the bare
spin current in systems with spin–orbit interaction, which is unfamiliar to the community and
requires better understanding and interpretation. Recently, Culcer et al [12] have developed
a semi-classical theory of spin transport and introduced a torque dipole moment to the spin
current. In this paper, we present a unified SU(2) × U(1) theory for spin and charge currents.
In our theory, both the Rashba and Dresselhaus interactions are described by an SU(2)

Yang–Mills field, and the total spin current contains an additional contribution from the field-
strength tensor of the Yang–Mills field and is conserved. Our theory provides a microscopic
understanding of the spin torque introduced in the semi-classical spin transport theory. The
orbital-angular-momentum current or the orbit current is shown to be non-conserved in the
presence of an electromagnetic U(1) field. We also derive the forces induced by the Yang–
Mills field such as the Rashba and Dresselhaus fields and the sheer strain field acting on spin
and spin current. Finally, we argue that the spin density and spin current may be regarded as
a source to generate Yang–Mills fields.

2. Partially conserved spin current

It is well known that the Dirac equation for an electron moving in an external potential V (as
well as the Maxwell vector potential A) in the non-relativistic limit up to the order of 1/c2

leads to the Hamiltonian

H = 1

2m

(
p − e

c
A +

2m

h̄2 ŝ × �λ
)2

+
1

2
∇ · �λ − 2

h̄
µB ŝ · B +

mλ2

4h̄2 + V, (1)

where �λ = h̄2

4m2c2 ∇V, B = ∇ × A and e denotes the charge of the carriers under consideration.
The first term in equation (1) indicates the Rashba spin–orbit coupling (e.g., �λ = αẑ),

which represents the dynamical momentum involving the interaction of an electron with both
the U(1) Maxwell field and SU(2) Yang–Mills field, the second is the Darwin term [20], the
third term is the Zeeman energy and the last one is a higher order term [21].

For an electron system confined in the x–y plane, the strength vector of the Rashba
coupling is given by �λ = b〈E〉 [22], with E being the electric field along the z-direction and b
the linear coefficient. The component of the SU(2) Yang–Mills field potentials in this system
can be expressed in terms of the U(1) Maxwell fields E and B, hence the SU(2) Yang–Mills
field strength is related to the Maxwell-field strength and their derivatives. This appears to be
a realistic example of Yang–Mills field in condensed matter system.

To start with general formalism, let us consider the Schrödinger equation for a particle
moving in an external U(1) Maxwell field and an SU(2) Yang–Mills gauge field,

ih̄
∂

∂t
�(r, t) = H�(r, t)

(2)

H = 1

2m

(
p̂ − e

c
A − ηAaτ a

)2
+ eA0 + ηAa

0τ
a,

where � is a two-component wavefunction. Clearly, in comparison to equation (1), A0 and Aa
0

refer to mλ2

4eh̄2 + V
e

and − 2
h̄
µB ŝ · B, respectively, but our further discussion is valid for the general

case. In this paper, the Greek superscripts/subscripts stand for 0, 1, 2, 3, the Latin ones for
1, 2, 3 and repeated indices are summed over. Let us denote the vector potential of the Maxwell
electromagnetic field by Aµ = (A0, Ai) and the vector potential of the Yang–Mills field [18]
by Aµ = Aa

µτ a , with τ a being the generators of SU(2) Lie group. Similar to the field-strength
tensor of the electromagnetic field (Maxwell field), which is defined by Fµν = ∂µAν − ∂νAµ,
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the field-strength tensor of the Yang–Mills field is defined by Fµν = Fa
µντ

a , whose components
are given by Fa

µν = ∂µAa
ν − ∂νAa

µ − ηεabcAb
νAc

µ.

Let ŝa = (ŝ1, ŝ2, ŝ3) be the spin operators, then the local spin density is given by
σa(r, t) = �†(r, t)ŝa�(r, t). Using the method similar to the derivation of the continuity
equation for the charge current, one obtains a continuity-like equation(

∂

∂t
− η �A0×

)
�σ(r, t) +

(
∂

∂xi

+ η �Ai×
)

�J i(r, t) = 0 (3)

where the spin-current density is defined as

�J(r, t) = 1
2 Re �†(�sv + v�s)� (4)

with the velocity operator v̂ given by

v̂ = dr
dt

= 1

ih̄
[r,H ] = 1

m

(
p̂ − e

c
A − ηAaτ a

)
(5)

and ητa = ŝa which are just the spin operators if η = h̄. In order to avoid ambiguities,
the indices i, j, k, µ, ν refer to the components of a vector in spatial space while a, b, c, α

refer to those in the intrinsic space (Lie algebra space or spin space). Moreover, a vector in
spatial space is denoted by a bold face while that in intrinsic space is specified by an overhead
arrow, e.g., �σ = (σ 1, σ 2, σ 3), A = (A1, A2, A3), �Ai = (

A1
i ,A2

i ,A3
i

)
, �J = (J1, J2, J3) and

J3 = (
J 3

1 , J 3
2 , J 3

3

)
, etc.

Let us discuss the physics implications of equation (3). In the static case �J = 0,
equation (3) reduces to ∂t �σ = η �A0 × �σ , which implies that the 0th component of the Yang–
Mills field �A0 induces a torsion on the local spin density �σ . From equation (3), we can also
see that the spin current is non-conserved even in the limit �A0 = 0 provided that the spatial
components �Ai �= 0. This is because that the Yang–Mills field �Ai produces a torsion η �Ai × �J i

on the spin current, which results in an additional spin precession.
Note that the continuity-like equation for the partially conserved spin current,

equation (3), can be written in a matrix form

(
∂

∂t
− 
0

)
σ 1

σ 2

σ 3


 +

(
∂

∂xi

+ 
i

)
J 1

i

J 2
i

J 3
i


 = 0 (6)

with 
µ = ηAa
µ�a . Here, �a stand for a representation matrices of the generators of SO(3)

Lie group, namely,

�1 =

0 0 0

0 0 1
0 −1 0


 , �2 =


0 0 −1

0 0 0
1 0 0


 , �3 =


 0 1 0

−1 0 0
0 0 0


 .

This provides a geometric picture that the non-conservation of spin current implies the
existence of a non-trivial connection characterizing parallel displacements in spacetime
manifold, i.e., the local intrinsic frame rotates from point to point.

3. Unified operators for charge and spin currents

As we shall see below, it will be instructive to consider spin and charge in a four-dimensional
intrinsic space with three dimensions in spin and one in charge. The continuity equation
related to the conventional charge density ρ = e�†� reads

∂ρ

∂t
+ ∇ · j = 0, (7)
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where j = e Re �†v̂� is the charge current density. We introduce a four-dimensional
velocity and a four-dimensional current valued on the U(1) × SU(2) gauge group. Let
τα = (τ 0, τ a) with τ 0 being the identity matrix, the four-dimensional velocity operator is
defined as v̂µ = vα

µτα , which is determined by the Heisenberg equation of motion

v̂µ = 1

ih̄
[xµ,H ]. (8)

In the above equation, we have taken the commutation relation between x0 = ct and the
Hamiltonian to be ich̄. For the Hamiltonian (2), we can write

v̂µ ≡ (v̂0, v̂i) = (
c, v0

i + va
i τ

a
)
, (9)

with v0
0 = 1, va

0 = 0; v0
i = (

p̂i − e
c
Ai

)/
m and va

i = −ηAa
i

/
m. Using these velocity operators,

a unified four-dimensional ‘current-tensor operator’ including both charge and spin degrees
of freedom is then defined as

Ĵ α
µ ≡ 1

2 {v̂µ, ŝα}. (10)

The anti-commutator guarantees the defined tensor to be Hermitian. To make the stipulation
consistent with what we have discussed above, α = a with a = 1, 2, 3 refer to spin and α = 0
refers to charge. Accordingly, ŝ0 = eτ 0. From equation (10) we obtain, for µ = 0,

Ĵ α
0 =

{
Ĵ 0

0 = ecτ 0,

Ĵ a
0 = cŝa

(11)

which recovers the usual definitions of charge and spin densities,

ρ(r) ≡ 1

c
J 0

0 (r) = 1

c
�†Ĵ 0

0� = e�†�,

(12)

σa(r) ≡ 1

c
J a

0 (r) = 1

c
�†Ĵ a

0� = �†ŝa�.

For µ = i, we have

Ĵ α
i = 1

2 {v̂i , ŝ
α} =

{
Ĵ 0

i = ev̂i

Ĵ a
i = 1

2 (v̂i ŝ
a + ŝa v̂i )

which defines the charge and spin current densities,

ji(r) ≡ J 0
i (r) = Re �†Ĵ 0

i � = e Re �†v̂i�,
(13)

J a
i (r) ≡ J a

i (r) = Re �†Ĵ a
i � = Re �† 1

2 (v̂i ŝ
a + ŝa v̂i )�.

The continuity-like equations (3) can be written in a four-dimensional form
∂

∂xµ

Jµ + iη[Aµ, Jµ] = 0, (14)

where Jµ = J a
µτ a denotes the spin-current vector which is a matrix-valued vector, and A

µ

is obtained from Aµ by the Minkowski metric tensor gµν = diag(1,−1,−1,−1). This
shows that equation (3) is an SU(2) covariant extension of traditional continuity equation. By
comparing the above equation with the continuity equation for the charge current, we see that
the non-vanishing terms in equation (3) or equation (14) in systems with Rashba spin–orbit
coupling are just the spin torque in the semi-classical theory of Culcer et al [12]. The spin
torque represents the spin procession caused by an external magnetic field and the Rashba
interaction. Since the rotational symmetry in spin space is broken, the spin density is not
conserved. In our theory, the non-conservation of spin current in the presence of Yang–Mills
field is due to its non-Abelian feature.

Since the spin current defined in equation (4) is non-conserved, it will be interesting
to examine the origin of the non-conservation by means of constructing a conserved ‘total
current’.
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4. Conservation of a total spin current

An electron has two important intrinsic properties: its charge and spin. As we have illustrated,
the Rashba or Dresselhaus coupling describes the interaction between an electron and some
particular SU(2) gauge fields. The SU(2) gauge potential was also adopted in the discussion
of the quantum interference of a magnetic moment in magnetic fields [19]. We are therefore
motivated to construct a theory with the gauge field coupled to spin and spin current in
Lagrangian formalism.

The non-relativistic Lagrangian density of the system in the symmetric form is given by

LNR = i

2
(�̇†� − �†�̇) + �†(eA0 + ηAa

0

)
�

+
1

2m

[(
p − e

c
A − ηAaτ a

)
�

]†
·
[
p − e

c
A − ηAaτ a

]
�

− 1

4
FµνFµν − 1

4
Fa

µνFa
µν, (15)

where �̇ = ∂
∂t

�. According to the Euler–Lagrangian equation, this Lagrangian density gives
the same equation of motion as equation (2)

i
∂

∂t
� =

[
1

2m

(
p − e

c
A − ηAaτ a

)2
+ eA0 + ηAa

0τ
a

]
�. (16)

For the system with a Rashba spin–orbit coupling in some semiconductors, the SU(2) gauge
potential is antisymmetric Aa

i = −Ai
a , namely,

Aa
i = h̄

8ηmc2
εiab∂bV . (17)

However, our formalism here in terms of the Yang–Mills field covers more general cases, such
as systems with a Dresselhaus coupling.

Noether’s theorem suggests that the invariance of the system under a continuous
transformations will lead to a corresponding conservation quantity, hence a conserved total
current can be defined by

J α
µ = δL

δAµα
≡ J α

µ + J ′α
µ, (18)

which obeys

∂

∂xµ

J α
µ = 0, (19)

where J ′α
µ refers to the contribution from the Yang–Mills field and Maxwell field. We adopted

a notation Aα
µ = (

A0
µ,Aa

µ

) = (
Aµ,Aa

µ

)
in equation (18) and the explicit components of J α

µ

can be easily read out as

J 0
0 = e�†�, J 0

i = e Re �†v̂i�, (20)

for the charge case, and

J a
0 = η�†τ a�, J a

i = η Re �† 1
2 (τ av̂i + v̂iτ

a)�, (21)

for the spin case. These results are consistent with the unified four-dimensional currents we
have introduced in the previous section. Equations (20) and (21) are just non-relativistic limit
of ψ̄γµψ and ψ̄γ5γµγ aψ , respectively, in which ψ = (

�

χ

)
refers to Dirac fermions.

Now let us turn to the extra part J ′α
µ. For α = 0, J ′0

µ is null and the charge current
j = e Re �†v̂� (i.e., J 0

i ) is just the total current and hence is conserved, which is consistent
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with equation (7). Note that the field-strength tensor of the SU(2) Yang–Mills field Fa
µν

depends on both the derivatives of the potential Aa
µ and the potential itself. This property is

very different from the Maxwell field, which only contains the derivatives of the potential Aµ.
Thus, the contribution from the Yang–Mills field J ′a

µ = ηεabcAb
νF c

µν is not null, namely,

�J ′
0 = −η �Aj × �Ej , �J ′

i = η �A0 × �Ei + ηεijk
�Aj × �Bk, (22)

where E and B are the Yang–Mills ‘electric’ and ‘magnetic’ fields. The above density of
(intrinsic) angular momentum J ′a

0 and its flow J ′a
i cancel the non-conservation term brought

about by the bare spin current after substituting them into the continuity equation (19) for the
total current.

The Lagrangian in equation (15) is shown suitable for an electron subjected to the Rashba
spin–orbit interaction (17), while that formalism can be constructed for other systems with
spin–orbit interaction. It is our conjecture that the non-conservation of the spin current of
the electron system may always be associated with corresponding Yang–Mills field. In this
picture, the Yang–Mills field induced by spin and spin current carries a fraction of the intrinsic
angular momentum, in analogy to the Maxwell field induced by charge and charge current
which carries orbital angular momentum. Finally, we argue that spin and spin current may be
regarded as a source generating Yang–Mills fields, which in turn interact with the electron.
With the help of Lagrangian formalism similar to equation (15), one should be able to study
various physical properties of the system, including the effect of the Yang–Mills field to the
observable. Since the effect of the Yang–Mills field is weaker than that of the Maxwell field,
the bare spin current has been suggested to be employed in detection [23].

5. Forces acting on spin and spin current

Using the covariant formalism, we can easily determine the force induced by the Yang–Mills
field on the spin density and spin current (named as spin force for simplicity). Analogous
to the Lorentz force evaluated by jµFµi in electromagnetism, the general form of the force
provided by a Yang–Mills field is given by

fi = J a
µFa

µi = σaEa
i − εijkJ

a
j Ba

k (23)

where σa and J a
i stand for the spin density and spin current, respectively.

The Yang–Mills fields corresponding to the Rashba and Dresselhaus spin–orbit couplings,
the Zeeman term and the sheer strain field for a system in x–y plane are given by

�A0 = −2µ
B

η
(Bx, By, Bz), �A1 = 2m

ηh̄
(β, α, γy),

�A2 = 2m

ηh̄
(−α,−β,−γ x), �A3 = (0, 0, 0),

(24)

where B ≡ (Bx, By, Bz) stands for the magnetic (Maxwell) field, α and β refer to the Rashba
and Dresselhaus coupling strengths and γ is related to sheer strain field, respectively. The
‘electric’ Yang–Mills field is given by Ei = Ea

i τ a with

�Ei = 2µ
B

η
∂i

�B + 2µ
B

�Ai × �B. (25)

The ‘magnetic’ Yang–Mills field reads

B3 = −2m

ηh̄
(∂1α + ∂2β)τ 1 − 2m

ηh̄
(∂1β + ∂2α)τ 2 +

(
4m2

ηh̄2 (β2 − α2) − 4m

ηh̄
γ

)
τ 3, (26)



SU(2) × U(1) unified theory for charge, orbit and spin currents 7121

while B1 = B2 = 0. In the above equations, α and β are non-uniform in general. The force
can be derived explicitly as

f1 = 2µB

η
�σ · ∂1 �B +

4mµB

ηh̄
[β(�σ × �B)1 − α(�σ × �B)2] − J 1

2 B1
3 − J 2

2 B2
3 − J 3

2 B3
3,

f2 = 2µB

η
�σ · ∂2 �B − 4mµB

ηh̄
[α(�σ × �B)1 − β(�σ × �B)2] + J 1

1 B1
3 + J 2

1 B2
3 + J 3

1 B3
3, (27)

f3 = 2µB

η
�σ · ∂3 �B.

The first term in these equations corresponds to the force due to inhomogeneity of the
magnetic field, which is the same as in the Stern–Gerlach apparatus. Clearly, there are more
forces acting on the spin, related to both the magnetic field and the Rashba and Dresselhaus
couplings. Furthermore, the spin current will be subjected to transverse forces. Note that
the inhomogeneous magnetic field generates a force of Stern–Gerlach type on spin while the
non-uniform Rashba and Dresselhaus coupling introduces a force on the spin current. In what
follows, we consider some special cases.

5.1. Uniform Rashba and Dresselhaus fields

If the Rashba and Dresselhaus coupling strengths are uniform (α and β are constants) and the
magnetic field is absent, we simply have

f1 = −2m

h̄
(β2 − α2)J 3

2 ,

f2 = 2m

h̄
(β2 − α2)J 3

1 , (28)

f3 = 0.

Clearly, the forces arising from the Rashba and Dresselhaus couplings are along the opposite
direction. The magnitudes of the forces are related to the perpendicular component (a = 3)

of the spin current only. Equation (28) was also obtained in a semi-classical approach [26].

5.2. Non-uniform Rashba and Dresselhaus fields

If α [25] and β are non-uniform, there will be a transverse force whose magnitude is related
to the in-plane components (a = 1, 2) of the spin current. For example, in the case |α| = |β|
and B = 0, we have

f1 = 2m

ηh̄

[
J 1

2 (∂1α + ∂2β) + J 2
2 (∂1β + ∂2α)

]
,

f2 = −2m

ηh̄

[
J 1

1 (∂1α + ∂2β) + J 2
1 (∂1β + ∂2α)

]
, (29)

f3 = 0.

5.3. Pure sheer strain field

For electrons subjected to a sheer strain field [24] only, which corresponds to α = β = B = 0
but γ �= 0, the forces are given by

f1 = 4m

ηh̄
γ J 3

2 , f2 = −4m

ηh̄
γ J 3

1 , f3 = 0, (30)

where γ ∝ C3/(h̄e) in the notation of [24]. Clearly, there is a transverse force acting on the
spin current.
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6. Orbit density and orbit current

It is worthwhile to investigate the continuity-like equation for orbit density and orbit current.
We can define a local density of orbital angular momentum ωa(r, t) = 1

2�†L̂a� + 1
2 (L̂a�)†�.

Here, L is the dynamical angular momentum, L̂a = εabcxb(p̂c − (e/c)Ac − ηAaτ a) for the
system of an electron moving in a Maxwell field and a Yang–Mills field. The orbit density so
defined is gauge covariant. Using the Shchrödinger equation (2), we can derive a continuity-
like equation

∂

∂t
ωa +

∂

∂xi

I a
i + εabcxbFα

cνJ
α
ν = 0 (31)

where the flow of the orbital angular momentum, namely the orbit current, is given by

I a
i (r, t) = Re �†Î a

i � − 1

4e
Î a
i

∣∣∣∣
A=0

ρ (32)

and

Î a
i = (v̂i L̂

a + L̂av̂i)/2
(33)

v̂i = (p̂i − (e/c)Ai − ηAaτ a)/m.

In equation (31), F0
ci = Fci refers to the field-strength tensor of the Maxwell field and Fa

ci

to that of the Yang–Mills field; J 0
i = ji refers to the charge current and J a

i the spin current.
Clearly, the orbit current (32) so defined is also gauge covariant. Note that the definition of the
orbit current is not a simple extension of the spin current (4) by replacing the spin operator by
the orbital-angular-momentum operator. Actually, there is one more term in the orbit current,
which involves change density ρ.

It is worthwhile to point out that the third term in equation (31) is related to both
charge current and spin current. In the absence of Maxwell and Yang–Mills fields, the
third term in equation (31) vanishes and the orbit current is thus conserved. Using notation
�ω = (ω1, ω2, ω3), �I i = (

I 1
i , I 2

i , I 3
i

)
and �r = (x1, x2, x3), we can write equation (31) in the

following form:

∂

∂t
�ω +

∂

∂xi

�I i = �r × �F + �r × �f . (34)

The physics implication of the right-hand side represents torque produced by Lorentz force �F
due to Maxwell field and the aforementioned spin force �f due to Yang–Mills field.

7. Summary

We have introduced a four-dimensional charge and spin current tensor for systems coupled
with Yang–Mills fields. The Rashba spin–orbit interaction and Dressenlhaus interaction can
be regarded as particular Yang–Mills fields. The current tensor is related to the SU(2)×U(1)

gauge potential. We have also provided a precise definition of orbital-angular-momentum
current. Using the Lagrangian formalism, we have constructed a conserved total current,
which consists of a conventional bare spin current and a non-vanishing term contributed from
the Yang–Mills field. The latter provides a microscopic interpretation of the presence of a
spin precession resulted in the non-conservation of the bare spin current. We have derived a
general formula describing the forces acting on the spin and spin current. We have proposed
that the spin density and spin current can be regarded as a source generating Yang–Mills fields
in a similar way as the Maxwell field generated by charge density and current.
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